MINIMUM STANDARDS FOR SCHOOL BUSES

1959 Revised Edition

Recommendations of

NATIONAL CONFERENCE ON SCHOOL TRANSPORTATION

Sponsored by

American Association of School Administrators, NEA
Council of Chief State School Officers
Department of Rural Education, NEA
National Commission on Safety Education, NEA
U. S. Office of Education

Administered by

NATIONAL COMMISSION ON SAFETY EDUCATION
NATIONAL EDUCATION ASSOCIATION
1201 Sixteenth Street, N. W.
Washington 6, D. C.
Copyright 1960

by the

NATIONAL EDUCATION ASSOCIATION

This publication may be purchased from the National Education Association, 1201 Sixteenth Street, N. W., Washington 6, D. C. Single copies, $1.00; 2-9 copies, 10 percent reduction; 10 or more copies, 20 percent reduction. Orders which amount to $1.00 or less must be accompanied by cash. Mailing charges will be added to any order for which payment is not enclosed. Make check payable to: National Education Association.

The 1959 National Conference on School Transportation also adopted recommendations published under the title Selection, Instruction, and Supervision of School Bus Drivers: Recommended Policies and Practices. Copies of this publication are available from the National Education Association for 50 cents each, subject to the same conditions as noted above for Minimum Standards for School Buses.
CONTENTS

FOREWORD .. 6
OBJECTIVES AND GUIDING PRINCIPLES 8
USING THESE MINIMUM STANDARDS FOR SCHOOL BUSES .. 9
MINIMUM STANDARDS FOR SCHOOL BUSES 11

The Bus Chassis ... 11
 Air cleaner ... 11
 Axles ... 11
 Battery ... 11
 Brakes ... 12
 Bumper, front .. 13
 Bumper, rear ... 13
 Clutch ... 13
 Color ... 13
 Drive shaft ... 13
 Electrical system 13
 Exhaust system 15
 Fenders, front .. 15
 Frame ... 15
 Frame lengths 15
 Fuel tank .. 16
 Generator or alternator 16
 Governor ... 17
 Horn ... 17
 Instruments and instrument panel 17
 Oil filter .. 19
 Openings .. 19
 Over-all length 19
 Passenger load 19
 Power or grade ability 19
 Shock absorbers 20
 Springs ... 20
 Steering gear 20
 Tires and rims 21
 Transmission .. 21
 Weight distribution 21
<table>
<thead>
<tr>
<th>CONTENTS (continued)</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Bus Body</td>
<td>22</td>
</tr>
<tr>
<td>Aisle</td>
<td>22</td>
</tr>
<tr>
<td>Battery</td>
<td>22</td>
</tr>
<tr>
<td>Body sizes</td>
<td>22</td>
</tr>
<tr>
<td>Book racks</td>
<td>23</td>
</tr>
<tr>
<td>Bumper, front</td>
<td>23</td>
</tr>
<tr>
<td>Bumper, rear</td>
<td>23</td>
</tr>
<tr>
<td>Ceiling</td>
<td>23</td>
</tr>
<tr>
<td>Chains</td>
<td>23</td>
</tr>
<tr>
<td>Color</td>
<td>23</td>
</tr>
<tr>
<td>Construction</td>
<td>25</td>
</tr>
<tr>
<td>Defrosters</td>
<td>25</td>
</tr>
<tr>
<td>Doors</td>
<td>26</td>
</tr>
<tr>
<td>Electrical system</td>
<td>27</td>
</tr>
<tr>
<td>Fire extinguisher</td>
<td>29</td>
</tr>
<tr>
<td>First-aid kit</td>
<td>29</td>
</tr>
<tr>
<td>Floor</td>
<td>29</td>
</tr>
<tr>
<td>Floor covering</td>
<td>29</td>
</tr>
<tr>
<td>Heaters</td>
<td>30</td>
</tr>
<tr>
<td>Identification</td>
<td>31</td>
</tr>
<tr>
<td>Inside height</td>
<td>31</td>
</tr>
<tr>
<td>Insulation</td>
<td>31</td>
</tr>
<tr>
<td>Interior</td>
<td>31</td>
</tr>
<tr>
<td>Lamp and signals</td>
<td>31</td>
</tr>
<tr>
<td>Mounting</td>
<td>35</td>
</tr>
<tr>
<td>Over-all width</td>
<td>35</td>
</tr>
<tr>
<td>Posts</td>
<td>35</td>
</tr>
<tr>
<td>Rear vision</td>
<td>35</td>
</tr>
<tr>
<td>Rub Rails</td>
<td>36</td>
</tr>
<tr>
<td>Sanders</td>
<td>36</td>
</tr>
<tr>
<td>Seats</td>
<td>36</td>
</tr>
<tr>
<td>Stanchions and guard rails</td>
<td>37</td>
</tr>
<tr>
<td>Steering wheel</td>
<td>38</td>
</tr>
<tr>
<td>Steps</td>
<td>38</td>
</tr>
<tr>
<td>Storage compartment</td>
<td>38</td>
</tr>
<tr>
<td>Sun shield</td>
<td>38</td>
</tr>
<tr>
<td>Tailpipe</td>
<td>39</td>
</tr>
<tr>
<td>Undercoating</td>
<td>39</td>
</tr>
<tr>
<td>Ventilation</td>
<td>39</td>
</tr>
</tbody>
</table>

020778
CONTENTS (continued)

Wheel housings ... 39
Width ... 39
Windshield and windows 39
Windshield washers ... 40
Windshield wipers ... 40
Wiring ... 40

APPENDIX
Development of National Standards for School Bus Construction 41
1945 National Conference on School Transportation 41
1948 National Conference on School Transportation 41
1951 Interim National Conference on School Transportation 41
1954 National Conference on School Transportation 41
1959 National Conference on School Transportation 42
National School Bus Chrome 42
Enactment of Proper Statutory Provisions for School
Transportation .. 43
Uniform Vehicle and Traffic Regulations 44
Suggested Method for Estimating Generator Capacity 45

TITLES AND ADDRESSES OF PRINCIPAL STATE
SCHOOL OFFICERS ... 46

SPONSORING GROUPS AND STEERING COMMITTEE 47

ROSTER OF CONFERENCE PARTICIPANTS 48

EXHIBITORS .. 54

FIGURES

CHASSIS PLAN .. 14
CHASSIS ELEVATION ... 18
BODY PLAN ... 24
BODY ELEVATION .. 28
FRONT ELEVATION ... 32
REAR ELEVATION ... 34

5

020779
OBJECTIVES AND GUIDING PRINCIPLES

Since the first National Conference on school bus standards in 1939, certain objectives and guiding principles have had a vital role in the development of the minimum standards for school buses. These objectives and guiding principles have been reaffirmed and emphasized at the subsequent National Conferences in 1945, 1948, 1951, 1954, and 1959. The two major objectives, safety and economy, along with the following principles, have served as guideposts for making decisions on the minimum standards and in arriving at sound and common agreement.

Objectives

The transportation of pupils in safety and comfort on safe, economical vehicles can be assured through adequate state regulations governing school bus construction.

Safety includes all those factors relative to school bus construction which may directly or indirectly affect the health, welfare, and safety of pupils transported.

Economy includes the construction, procurement, operation, and maintenance of school buses at the lowest cost consistent with the health and safety of pupils.

Guiding Principles

1. Uniform state school bus standards should
 a. be consistent with the objectives of safety and economy
 b. eliminate the construction of unsafe buses
 c. reduce conflicting standards wherever possible among states in the interest of production efficiency and lower costs
 d. specify exact dimensions where necessary to increase the efficiency of volume production
 e. eliminate unnecessary luxury consistent with the health, welfare, and safety of pupils transported.

2. Any adaptation of the nationally recommended minimum standards should be made by the states only in order to permit desirable adjustments to local needs and only when such adaptations do not
 a. basically conflict with the recommended national minimum standards
 b. otherwise unduly increase production costs.

3. Uniform state standards for school buses should specify results desired in terms of safety and economy, and these performance specifications must be defined when this is necessary to make the regulations enforceable.

4. Provisions should be made for periodic review and revision of uniform state standards for school buses through cooperation of the states.
side of chassis frame so that center line of battery shall be 52 inches back of cowl, and no part of battery shall extend above top of chassis frame.

Exception—small vehicles
1. Same as Item 1 above.
2. No bus shall be equipped with battery of less than 50 ampere hours at 12 volts, measured at 20-hour rate.
3. a. Same as Item 3a above.
 b. Item 3b does not apply.

Exception—transit and metropolitan vehicles
Item 3b does not apply.

Brakes —
1. Four-wheel brakes, adequate at all times to control bus when fully loaded, shall be provided.
2. Foot or service brakes shall, at all times, be capable of stopping complete unit (i.e., wet chassis weight, plus body weight, plus driver's weight, without pupils) from speed of 20 miles per hour in not more than 30 feet. Such distance to be measured from point at which movement of service brake pedal or control begins. Tests for stopping distance shall be made on substantially level (not to exceed plus or minus 1 percent grade), dry, smooth, hard surface that is free from loose material.
3. a. Chassis shall be equipped with auxiliary brake capable of locking rear wheels and capable of holding vehicle on any grade on which it is operated under any conditions of loading on a surface free from snow or ice. Operating controls of such auxiliary brake shall be independent of operating controls of service brakes.
 b. Under test conditions outlined in Item 2 above, auxiliary brake shall be capable of stopping vehicle from speed of 20 miles per hour in measured distance of 50 feet.
4. Chassis designed for any bus body of 48' or greater basic pupil capacity shall be equipped with full compressed-air brakes, vacuum-actuated power or assistor-type brakes, or compressed-air-over-hydraulic brakes. (See table under Body sizes, page 22.)
 a. Such installation shall be made by authorized representative of chassis or brake manufacturer and shall conform to recommendation of that manufacturer.
 b. Hydraulic line pressure shall not exceed recommendation of chassis or brake manufacturer.
 c. Total reservoir capacity (see Item d(1) below) shall be at least 1,650 cubic inches for full compressed-air systems, and at least 1,000 cubic inches for vacuum-actuated systems and for compressed-air-over-hydraulic systems.

1 With oil, water, and full tank of fuel.
d. Buses having full compressed-air systems shall be equipped with
 (1) at least two reservoirs (or one vessel divided into two com-
 partments) connected in series
 (2) safety valve mounted on first reservoir to protect air-brake
 system against excessive air pressure and check valve
 mounted in optional location
 (3) air gauge mounted on instrument panel to register air pres-
 sure in air-brake system (see Instruments and instrument
 panel, page 19)
 (4) audible low-pressure indicator to warn driver if air pressure
 in air-brake system falls below 60 pounds per square inch.

e. Buses having vacuum-actuated or compressed-air-over-hydraulic-
 systems shall be equipped with check valve located between
 source of supply and reservoir.

Bumper, front —

1. Front bumper shall be furnished by chassis manufacturer as part
 of chassis.

2. Front bumper must extend to outer edges of fenders at bumper top
 line (to assure maximum fender protection) and be of sufficient
 strength to permit pushing vehicle of equal gross weight without
 permanent distortion to bumper, chassis, or body.

Exception—transit and metropolitan vehicles

Same as above except that front bumper shall be furnished by body
manufacturer.

Bumper, rear — see page 23.

Clutch —

Clutch torque capacity shall be not less than 10 percent in excess of
maximum net torque output of engine. All chassis of 48 and 54 pupil
capacity buses shall be equipped with clutch of 11-inch minimum
diameter. Chassis of 60 and greater pupil capacity buses shall be
equipped with clutch of 12-inch minimum diameter or clutch of equiva-
 lent performance.

Color —

Chassis, including wheels and front bumper, shall be black;² hood,
cowl, and fenders shall be in national school bus chrome.³ (See page 42.)

Drive shaft —

Drive shaft shall be protected by metal guard or guards to prevent it
from whipping through floor or dropping to ground if broken.

² Federal Standard No. 595, black enamel #17038. Color chips, each 3" × 5"
 are available at 5 cents each from General Services Administration, Business
 Service Center, Region 3, 7th and D Streets, S. W., Washington 25, D. C.
³ Federal Standard No. 596, chrome yellow enamel #13432. Color chips
 each 3" × 5", are available at 5 cents each from source given in footnote 2.
3. Holes in top or bottom flanges of frame side rails shall not be permitted except as provided in original chassis frame. There shall be no welding to frame side rails except by chassis or body manufacturer.

Frame lengths — See table under Body sizes on page 22.

Fuel tank —
1. Fuel tank shall have minimum capacity of 30 gallons, be made of 16-gauge terneplate or equivalent, and be mounted directly on right side of chassis frame entirely outside body.
2. Flexible gasoline- and oil-proof connection shall be provided at engine end of fuel feed line.
3. Tank shall be equipped with adequate baffles.
4. Engine supply line shall be taken from top of tank.
5. Drain plug of at least ¼-inch diameter shall be located in center of bottom of tank.
6. Fill-pipe cap shall be of such design as to minimize spillage of fuel when bus turns corners in either direction. If venting of fuel tank is done other than through fill-pipe cap, cap shall be of nonvented type. Note: Measurements shown below are for guidance of chassis manufacturers and serve only to prevent need for replacement of original tank. Inspectors concerned with state or local approval of vehicle need not consider them unless tank does not fit.
 a. Tank shall not extend in height above side member of chassis.
 b. Distance from center line of chassis to outside of tank shall not be more than 39 inches.
 c. Bottom of tank shall not be more than 14 inches below top of frame.
 d. Distance from cowl to front of tank shall be 42 inches minimum.
 e. Distance from cowl to center of fill-pipe cap shall be 57 inches.
 f. Distance from center line of chassis to center of fill-pipe cap shall be 44 inches with plus or minus tolerance of ½ inch permitted.
 g. Center of fill-pipe cap shall be 1 inch below top of frame with plus or minus tolerance of ⅜ inch permitted.

Exception—small vehicles
Fuel tank shall be mounted, filled, and vented outside body.

Exception—transit and metropolitan vehicles
1. Fuel tank shall have minimum capacity of 30 gallons, be made of 16-gauge terneplate or equivalent, and be mounted away from left side of bus entirely outside passenger compartment.
2. Bottom of tank shall not be exposed below skirt of body side paneling. (See item 5 under Construction, page 25.)

3. Engine supply line shall be taken from upper portion of tank and shall be adequately protected.

4. Drain plug of at least \(\frac{1}{4}\)-inch diameter shall be located in bottom of tank.

5. Fill-pipe cap shall be entirely outside passenger compartment.

Generator or alternator —

Generator or alternator with rectifier shall have maximum output of at least 35 amperes with either low cut-in or charge-at-idle type (12-volt system), and shall be ventilated, voltage-controlled, and current-controlled.

Note: If electrical load is increased through addition of heater motors, electric windshield wipers, defrosters, etc., refer to page 45 of Appendix for guidance in selecting generator of adequate capacity.

Exception — small vehicles

Generator or alternator with rectifier shall have maximum output of at least 30 amperes with 12-volt system, and shall be ventilated, voltage-controlled, and current-controlled.

Governor —

Governor is permissible and where used shall be approved by chassis manufacturer.

Exception — transit and metropolitan vehicles

When engine is remotely located from driver, governor shall be installed to limit engine speed to maximum revolutions per minute recommended by engine manufacturer, or tachometer shall be installed so engine speed may be known to driver.

Horn —

1. Bus shall be equipped with horn or horns of standard make, each horn capable of producing complex sound in band of audiofrequencies between approximately 250 and 2,000 cycles per second and having total sound level of 110 decibels within these frequency limits when measured at point on axis of horn 3 feet from exit of horn.

2. Sound-level measurements shall be made with meter that complies with American Standard Z24.3-1944, or current revision thereof, as promulgated by American Standards Association, Inc.\(^6\) Measurement shall be made with meter set to flat response (C weighting network).

3. Sound-level measurements shall be made with horn or horns installed on bus. There shall be no reflecting walls or obstacles other than ground and vehicle closer than 100 feet from horn during sound-level measurements.

\(^6\) 10 East 40th Street, New York 16, New York.
Exception—small vehicles
Springs that are regular equipment on vehicle to be purchased may be used.

Steering gear —
1. Steering gear shall be approved by chassis manufacturer and designed to assure safe and accurate performance when vehicle is operated with maximum load and at maximum speed.
2. Steering mechanism shall provide for easy adjustment for lost motion.
3. No changes shall be made in steering apparatus which are not approved by chassis manufacturer.
4. There shall be clearance of at least 2 inches between steering wheel and cowl instrument panel, windshield, or any other surface.
5. Power steering is permissible if approved by chassis manufacturer.

Tires and rims —
1. Tire and rim sizes, based upon current standards of Tire and Rim Association,* shall be required.
2. In order to allow for reasonable tolerance, total weight imposed on any tire shall not be greater than 10 percent above current standard of Tire and Rim Association.
3. Dual rear tires shall be provided on all vehicles.
4. All tires on given vehicle shall be of same size and ply rating.
5. Spare tire, if required, shall be suitably mounted in accessible location outside passenger compartment.

Exception—small vehicles
Same as above, except that dual rear tires are not required.

Transmission —
1. Transmission shall be synchromesh or constant-mesh type. It shall be of sturdy construction, and input torque capacity shall be at least 10 percent above maximum net torque developed by engine. Its design shall provide not less than four forward and one reverse speeds.
2. Automatic transmissions are permissible.

Exception—small vehicles
Three-speed transmissions are acceptable.

Weight distribution —
Weight distribution of fully loaded bus on level surface shall be such that not more than 75 percent of gross vehicle weight is on rear tires and not more than 35 percent is on front tires.

Exception—transit and metropolitan vehicles
With engine inside front of body: If entrance door is ahead of front

*Current standards may be obtained from Tire and Rim Association, 2001
First National Tower, Akron 8, Ohio, or from tire manufacturers.
wheels, not more than 75 percent of gross vehicle weight shall be on rear tires nor more than 50 percent on front tires. If entrance door is behind front wheels, not more than 75 percent of gross vehicle weight shall be on rear tires nor more than 40 percent on front tires. With engine in rear: Not more than 75 percent of gross vehicle weight shall be on rear tires nor more than 40 percent on front tires.

The Bus Body

Aisle —
1. Minimum clearance of all aisles, including aisle (or passageway between seats) leading to emergency door, shall be 12 inches. (See Item 2f under Doors, page 26.)
2. Aisle supports of seat backs shall be slanted away from aisle sufficiently to give aisle clearance of 15 inches at tops of seat backs.

Exception — transit and metropolitan vehicles

With engine inside front of body: Minimum distance between stanchion at rear of entrance step-well and engine cover shall be 14 inches measured at floor level.

Battery — see Item 3 under Battery on page 11.

Body sizes —

Bodies for conventional body-on-chassis type vehicles shall be limited to lengths shown in table below. Sizes are based on 27-inch center-to-center spacing between rows of forward-facing seats, over-all width of 96 inches, center aisle width of 12 inches, and average rump width of (a) 13 inches for 3-3 seating plan and (b) 15 inches for 3-2 seating plan. Body lengths are measured from back of cowl to rear of body at floor level.

<table>
<thead>
<tr>
<th>Number of rows of seats</th>
<th>Pupil capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3-3 plan: rump width of 13 inches</td>
</tr>
<tr>
<td></td>
<td>Maximum body length (in inches)</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>54</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>66</td>
</tr>
</tbody>
</table>

Exception — small vehicles

Small vehicle may vary in capacity up to 23 pupils, may be narrower
than large vehicle, and body may have been converted from one originally manufactured for other purposes.

Exception—transit and metropolitan vehicles

Measurements in preceding table do not apply.

Book racks—

1. Book racks, if installed, shall be provided above side windows within range from front cross-seat to rear transverse seat except across or above emergency door.

2. Racks shall be free of projections likely to cause injury.

Bumper, front—see page 13.

Bumper, rear—

1. Rear bumper shall be of pressed steel channel at least 3/16 inch by 7 inches.

2. It shall be fully wrapped around to both sides and shall be so attached as to prevent hitching of rides.

3. It shall be attached to chassis frame and braced with material of impact ratio comparable to that of bumper material.

Exception—small vehicles

1. Rear bumper shall be furnished by chassis manufacturer as part of chassis.

2. Rear bumper shall be of sufficient strength to permit vehicle being pushed without permanent distortion to bumper, chassis, or body.

Exception—transit and metropolitan vehicles

Rear bumper shall be of sufficient strength to permit fully loaded vehicle being pushed without permanent distortion to bumper or body. It shall be so designed as to prevent hitching-to or riding-on and shall be long enough to protect full width of body.

Ceiling—see Insulation and Interior on page 31.

Chains—see item 4 under Wheel housings on page 39.

Color—

1. School bus body including hood, cowl, and fenders shall be painted uniform color, national school bus chrome,9 according to specifications available from General Services Administration. (See page 42.)

2. Rear bumper and lettering shall be black.10

3. Body trim, if used, shall be black.10

9 Federal Standard No. 595, chrome yellow enamel #13433. Color chips, each 3" x 5", are available at 5 cents each from General Services Administration, Business Center, Region 3, 7th and D Streets, S.W., Washington 25, D. C.

10 Federal Standard No. 595, black enamel #17038. Color chips, each 3" x 5", are available at 5 cents each from source given in footnote 9.
Construction —

1. Construction shall be all-steel or other metal with strength at least equivalent to all-steel as certified by bus body manufacturer.

2. Construction shall provide reasonably dustproof and watertight unit.

3. Bus body (including roof bows, body posts, and floor) shall be of sufficient strength to support entire weight of fully loaded vehicle on its top or side if overturned. It shall have sufficient frame members (strainers, stringers, etc.) in roof structure and corners to provide adequate safety and to resist damage on impact. As evidence that bus body meets this standard, manufacturer shall furnish, for each current body model, certification in duplicate (unless more are requested by state department of education) that bus body meets School Bus Body Manufacturers’ Association Static Load Test Code for School Bus Body Structure.\(^{11}\) Consideration of impact resistance shall be a prime factor in body design in compliance with Code requirements. Copies of Code shall be furnished in duplicate (unless more are requested by state department of education) by School Bus Body Manufacturers’ Association to each state department of education. State department of education shall, in turn, transmit Code and certification for each current body model to each other state agency responsible for development or enforcement of state standards for school buses. (See pages 46-7.)

4. a. Floor shall be of metal at least equal in strength to 14-gauge steel or of 5-ply plywood at least 5/8-inch thick and found by standard test to be at least equal in strength to 14-gauge steel, provided it equals or exceeds properties of exterior-type Douglas fir plywood, B-B Grade, as specified in standard issued by U. S. Department of Commerce.\(^{12}\)

b. All openings between chassis and passenger-carrying compartment made due to alterations by body manufacturer must be sealed. (See Openings, page 19.)

5. See Item 2 of Exception for transit and metropolitan vehicles under Fuel tank, page 16.

Exception—small vehicles

Item 3 does not apply to small vehicles not manufactured specifically as school buses.

Item 4a: Floor on small vehicles not manufactured specifically as school buses shall be manufacturer’s standard.

Defrosters —

Defrosters, if required, shall be of sufficient capacity to keep wind-
shield clear of fog, ice, and snow. This may be done by using fans or by taking heat directly from approved heater.

Doors —

1. Service door:
 a. Service door shall be power or manually operated, under control of driver, and so designed as to afford easy release and prevent accidental opening. When hand lever is used, no parts shall come together so as to shear or crush fingers.
 b. Service door shall be located on right side of bus opposite driver and within his direct view.
 c. Service door shall have minimum horizontal opening of 24 inches and minimum vertical opening of 65 inches.
 d. Service door shall be of split type or sedan type. (Split-type door includes any sectioned door which divides and opens inward or outward.) If one section of split-type door opens inward and other opens outward, front section shall open outward.
 e. Lower as well as upper panels shall be of approved safety glass. (See Item I under Windshield and windows, page 39.) Bottom of lower glass panel shall not be more than 35 inches from ground when bus is unloaded. Top of upper glass panel shall not be more than 6 inches from top of door.
 f. Vertical closing edges shall be equipped with flexible material to protect children’s fingers.
 g. There shall be no door to left of driver. (This shall not be interpreted to conflict with Item 2a below.)

2. Emergency door and emergency window:
 a. Emergency door shall be located in center of rear end of bus or in rear half of left side of bus if engine is so located as to make it impossible to place door in center of rear end.
 b. Emergency door shall have minimum horizontal opening of 24 inches and minimum vertical opening of 48 inches measured from floor level.
 c. Emergency door shall be hinged on right side if in rear end of bus and on front side if on left side of bus. It shall open outward and shall be labeled inside to indicate how it operates.
 d. Upper portion of emergency door shall be equipped with approved safety glass. Exposed area of which shall not be less than 12 inches in height and 20 inches in width. (See Item I under Windshield and windows, page 39.)
 e. There shall be no steps leading to emergency door.
 f. No seat or other object shall be so placed in bus as to restrict any part of passageway leading to either rear or left-side emergency door to opening smaller than rectangle of 12 inches in width and 48 inches in height, measured from floor level.
 g. When not fully latched, emergency door shall actuate signal audible to driver by means of mechanism actuated by latch.
h. Words "EMERGENCY DOOR," both inside and outside in letters at least 2 inches high, shall be placed directly above emergency door.

i. If emergency door is located on left side of bus:
 (1) Window at rear shall be designed as emergency exit and shall be no smaller than 16 inches in height and 54 inches in width on buses 80 inches or more in width; it shall be no smaller than 16 inches in height and 48 inches in width on buses less than 80 inches in width. Window shall be hinged from top and devised and operated to insure against accidental closing in emergency.
 (2) Paneling is required to cover space between top of rear divan seat and inside surface of emergency window at rear.

j. Words "EMERGENCY EXIT," in letters at least 2 inches high, shall be placed directly above emergency window on inside and directly below it on outside.

k. Both emergency door and emergency window shall be designed to open from inside and outside bus and shall be equipped with fastening device which may be quickly released but is designed to offer protection against accidental release. Control from driver's seat shall not be permitted. Provision for opening from outside shall consist of nondetachable device so designed as to prevent hitching-to, but to permit opening when necessary.

Exception—small vehicles
Substitute following standards for those above:

1. Service door shall be located to right of driver and shall be manually controlled from driver's seat by over-center control for bus-type conveyance.

2. Emergency door:
 a. Emergency door shall be located in center of rear end of bus and shall be equipped with fastening device for opening from inside and outside body, which may be quickly released but is designed to offer protection against accidental release. Metal guard shall be placed over door control on inside. Control from driver's seat shall not be permitted. Provision for opening from outside shall consist of device designed to prevent hitching-to, but to permit opening when necessary.
 b. Door shall open either vertically or horizontally. When vertical-type door is used, there shall be unobstructed aisle at least 12 inches wide.
 c. Emergency door shall be marked "EMERGENCY DOOR" on inside.
 d. There shall be no steps leading to emergency door.
 e. No seat or other object shall be placed in bus which restricts passageway to emergency door to less than 12 inches.

Electrical system—

1. Battery—see page 11.
2. Generator or alternator—see page 17.
3. Lamps and signals—see page 31.
4. Wiring—see page 40.

Fire extinguisher —

1. Bus shall be equipped with at least one dry-chemical type fire extinguisher of at least 2½-pound capacity, mounted in extinguisher manufacturer’s bracket of automotive type, and located in driver’s compartment in full view of and readily accessible to driver.

2. Fire extinguisher shall bear label of Underwriters’ Laboratories, Inc., showing rating of not less than 4-B:C.\(^{14}\)

First-aid kit —

1. Bus shall carry Grade A metal first-aid kit and Type II contents conforming to specifications as set forth in current Federal Specification GG-K-391a.\(^{15}\) mounted in full view and in accessible place in driver’s compartment.

2. Number of units and contents shall be designated by proper state authorities from following GG-K-391a table:

<table>
<thead>
<tr>
<th>Item</th>
<th>16-unit</th>
<th>24-unit</th>
<th>36-unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandage compress, (sterile gauze pads) 4-inch</td>
<td>2</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Bandage compress, (sterile gauze pads) 2-inch</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Adhesive absorbent bandage (adhesive tape) 1-inch</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Triangular bandage, 40-inch</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gauze bandage, 4-inch</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Absorbent-gauze compress</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Burn compound, ½-ounce</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Burn compound, ¾-ounce</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Eye-dressing unit</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Antiseptic applicators (swab type) (iodine or nitromersal tincture N.F. or thimersol N.F.)</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Ammonia inhalants</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Ammonia ampules</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Wire splints</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tourniquet and forceps</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Floor — see Construction on page 25.

Floor covering —

1. Floor in underseat area, including tops of wheel housings, driver’s compartment, and toeboard, shall be covered with fire-resistant floor-covering material of type commonly used in passenger transportation.

\(^{13}\) 207 East Ohio Street, Chicago 11, Illinois.

\(^{14}\) 4-B:C denotes amount of chemical needed to extinguish 4-square-foot type B fire (flammable liquid) or type C fire (electrical).

\(^{15}\) Obtainable from General Services Administration, Business Service Center, Region 3, 7th and D Streets, S.W., Washington 25, D. C. Price, 15 cents.
equipment. Floor covering shall be of rubber or linoleum and shall have minimum over-all thickness of 0.125 inch. (Linoleum floor covering shall be made with oxidized linseed-oil binder having cork filler and placed on burlap or felt backing.)

2. Floor covering in aisle shall be of aisle-type rubber or linoleum, non-skid, and wear-resistant. If of linoleum, or rubber without ribs, it shall have minimum over-all thickness of 0.125 inch. If of ribbed material, minimum over-all thickness shall be 0.140 inch measured from tops of ribs. (Linoleum floor covering in aisle shall be as described in Item 1 above.)

3. Floor covering must be permanently bonded to floor and must not crack when subjected to sudden changes in temperature. Bonding or adhesive material shall be waterproof and shall be of type recommended by manufacturer of floor-covering material. All seams must be sealed with waterproof sealer.

Exception—small vehicles

Floor covering on small vehicles not manufactured specifically as school buses shall be manufacturer's standard.

Heaters —

1. Where heaters are required, they shall be of hot-water or combustion type.

2. If only one heater is used, it shall be of fresh-air or combination fresh-air and recirculating type.

3. If more than one heater is used, additional heaters may be of circulating type.

4. Where hot-water heaters are used, they shall bear name plate rating of School Bus Body Manufacturers' Association Standard Code for Testing and Rating Automotive Bus Hot Water Heating and Ventilating Equipment,14 plate to be affixed by heater manufacturer. Copies of Code shall be furnished in duplicate (unless more are requested by state department of education) by School Bus Body Manufacturers' Association to each state department of education. State department of education shall, in turn, transmit such Code to each other state agency responsible for development or enforcement of state standards for school buses. (See pages 46-7.)

5. All combustion-type heaters shall be approved by Underwriters' Laboratories, Inc.15

6. If combustion-type heaters are used, they shall be installed on new buses by body manufacturers and on buses now in operation by authorized dealers or by authorized garages.16

14 Copies available from School Bus Body Manufacturers' Association, An Industry Division of Truck and Body Equipment Association, Inc., 401-402 Washington Board of Trade Building, 1616 16th Street N. W., Washington 6, D. C.
15 207 East Ohio Street, Chicago 11, Illinois.
7. Heaters shall be capable of maintaining inside temperature of 50 degrees Fahrenheit at average minimum January temperatures as established by U. S. Department of Commerce, Weather Bureau, for area in which heater is required.

Identification —
1. Body shall bear words "SCHOOL BUS" in black letters at least 8 inches high on both front and rear of body or on signs attached thereto. Lettering shall be placed as high as possible without impairment of its visibility. Lettering shall conform to "Series B" of Standard Alphabets for Highway Signs.
2. Words "STOP ON SIGNAL" may be painted on rear of bus. Word "STOP" by itself shall not be used.
3. Only signs and lettering approved by state law or regulation, limited to name of owner or operator and any number necessary for identification, shall appear on sides of bus.

Inside height —
Minimum inside body height shall be 70 inches measured at any point on longitudinal center line from front vertical bow to rear vertical bow.

Exception — small vehicles
Standard does not apply.

Insulation —
Ceilings and walls shall be insulated with proper materials to deaden sounds and to reduce vibrations. If thermal insulation is used, it shall be fire-resistant material of type approved by Underwriters' Laboratories, Inc.

Interior —
1. Interior of bus shall be free of all unnecessary projections likely to cause injury. This standard requires inner lining on ceilings and walls.
2. Ceilings over aisles shall be free of all projections.

Lamps and signals —
1. All lamps and their installation shall conform to current standards and recommendations of Society of Automotive Engineers.
2. Head lamps: Bus shall be equipped with head lamps and fuses or circuit breakers.

19 Washington 25, D. C.
20 Designed by U. S. Bureau of Public Roads for Joint Committee on Uniform Traffic Control Devices. A full-scale layout (40 inches over-all length) of words "SCHOOL BUS" as here specified, with suggestions for application, is available from National Commission on Safety Education, 1201 Sixteenth Street, N. W., Washington 6, D. C. Price 50 cents. One copy of this layout may be used repeatedly as guide for placing specified lettering on buses.
21 217 East Ohio Street, Chicago 11, Illinois.
22 485 Lexington Avenue, New York 17, New York.
3" BLACK AREA AROUND SIGNAL LAMPS
FRONT AND REAR, ALTERNATE AREA,
WHEN NO FLAT VERTICAL SURFACE OF
BODY SURROUNDS LAMPS

CLEARANCE LAMPS (AMBER)

RED LENS

SCHOOL BUS

AMBER LENS

SEAT

RUB RAILS

FLOOR

FLOOR 2

EXTERIOR MIRRORS
MIN. AREA EACH
50 SQ.IN.

FRONT ELEVATION

Prepared especially for this publication by
School Bus Body Manufacturers' Association
3. Clearance and side-marker lamps: Clearance and side-marker lamps (amber at front, red at rear) shall be mounted as high as possible on permanent structure of bus and in such manner as to indicate extreme width of body. Clearance lamps and side-marker lamps may be in combination.

4. Tail and stop (brake) lamps:
 a. Bus shall be equipped with two tail lamps and two stop (brake) lamps not in combination, emitting red light plainly visible for distance of 500 feet to rear. Stop (brake) lamps shall have light intensity at least equal to Class A, Type I turn-signal units as established by Society of Automotive Engineers.\(^{22}\)
 b. Tail lamps shall be mounted not less than 40 inches from surface on which vehicle stands. Stop (brake) lamps shall be as high as practicable but below window line, and spaced as far apart laterally as practicable but not less than 3 feet. Measurements shall be taken from lamp centers.

5. License-plate lamp: Bus shall be equipped with rear license-plate illuminator. This lamp may be combined with one of tail lamps.

6. Interior lamps: Interior lamps shall be provided which adequately illuminate aisle and step-well.

7. School bus alternately flashing red signal lamps:
 Definition: School bus alternately flashing red signal lamps are lamps mounted at same horizontal level, intended to identify vehicle as school bus and to inform other users of highway that such vehicle is stopped or about to stop on highway to take on or discharge school children.
 a. Bus shall be equipped with two red lamps at rear of vehicle and two red lamps at front of vehicle, which shall be controlled by manually actuated switch and shall flash alternately at rate of 60 to 120 cycles per minute. No brake-operated switch shall be permitted.
 b. There shall be visible or audible means of giving clear and unmistakable indication to driver when signaling system is turned on.
 c. Installation recommendations:
 (1) Each signal lamp shall be mounted with its axis substantially parallel to longitudinal axis of vehicle.
 (2) Front and rear signal lamps shall be spaced as far apart laterally as practicable, but in no case shall spacing between lamp centers be less than 3 feet.
 (3) Location of front signal lamps shall be such that they can be clearly distinguished when headlamps are lighted on lower beam.
 (4) Signal lamps shall be mounted at front above windshield and at rear so that lower edge of lens is not lower than top line of side window openings.

\(^{22}\) 485 Lexington Avenue, New York 17, New York.
SIGNAL LAMPS AND TURN SIGNAL LAMPS SPACED AS FAR APART LATERALLY AS PRACTICAL BUT NOT LESS THAN 3 FEET (FRONT AND REAR)

SERIES 'B' LETTERING STANDARD ALPHABET FOR HIGHWAY SIGNS-BLACK (FRONT AND REAR)

REAR ELEVATION

Prepared especially for this publication by Automobile Manufacturers Association

020807
(5) Vision of front signal lamps to front and of rear signal lamps to rear shall be unobstructed by any part of vehicle from 10 degrees above to 10 degrees below horizontal and from 20 degrees to right to 20 degrees to left of center line of vehicle.

(6) Area around lens of each alternately flashing red signal lamp and extending outward approximately 3 inches shall be painted black.24 In installations where there is no flat vertical portion of body immediately surrounding entire lens of lamp, circular or square band of black 24 approximately 3 inches wide, immediately below and to both sides of lens, shall be painted on body or roof area against which signal lamp is seen (from distance of 500 feet along axis of vehicle).

8. Turn-signal units: Bus shall be equipped with Class A, Type I turn-signal units that meet specifications of Society of Automotive Engineers.25 These signals must be independent units.

9. Flags and flares:
 a. School bus shall carry at all times at least two red cloth flags not less than 12 inches square and means for mounting for use in warning traffic in event of prolonged stops on highway.
 b. Bus shall carry at least three liquid-burning flares or red electric lanterns, or at least three red emergency reflectors, to be displayed according to state law in event of prolonged stops on highway. Liquid-burning flares must be carried in leakproof metal box or carried outside body compartment.

Mounting —
Chassis frame shall extend to rear of rear body cross member.

Over-all width —
Over-all width of bus shall not exceed 96 inches.

Posts — see Construction on page 25 and Item 2 under Windshield and windows on page 39.

Rear vision —
1. Interior clear-view mirror shall be 6 by 30 inches over-all, to afford good view of pupils and roadway to rear. If not metal-backed and framed, mirror shall be of laminated plate safety glass.26 It shall have rounded corners and protected edges.

2. Two exterior clear-view, rearview mirrors shall be provided, one to

24 Federal Standard No. 595, black enamel \#17038. Color chips, each 3" x 5", are available at 5 cents each from General Services Administration, Business Service Center, Region 3, 7th and D Streets, S.W., Washington 25, D.C.

25 485 Lexington Avenue, New York 17, New York.

left and one to right of driver. Area of each mirror shall be not less than 50 square inches over-all. Each mirror shall be firmly supported and adjustable to give driver clear views past left rear and right rear of bus.

Rub rails —

Two rub rails of ample strength to resist impact and to prevent body crushing shall be provided on each side of body. They shall be applied to full outside length of body: on left side from windshield post to rear corner radius and on right side from service door to rear corner radius. One rail shall be located approximately at seat line and one approximately at floor line. Pressed-in or snap-on rub rails do not satisfy this requirement.

Exception — small vehicles

Standard does not apply to small vehicles not manufactured specifically as school buses.

Sanders —

Where required or used, sanders shall:
1. Be of hopper cartridge-valve type.
2. Have metal hopper with all interior surfaces treated to prevent condensation of moisture.
3. Be of at least 100 pounds (grit) capacity.
4. Have cover, on filler opening of hopper, which screws into place sealing unit airtight.
5. Have discharge tubes extending to front of each rear wheel under fender.
6. Have no-clogging discharge tubes with slush-proof, non-freezing rubber nozzles.
7. Be operated by electric switch with telltale light mounted on instrument panel.
8. Be exclusively driver-controlled.
9. Have gauge to indicate hoppers need refilling when they are down to one-quarter full.

Seats —

1. All seats shall have minimum depth of 14 inches.
2. In determining seating capacity of bus, allowable average rump width shall be:
 a. 13 inches where 3-3 seating plan is used
 b. 15 inches where 3-2 seating plan is used.
 (See table under Body sizes, page 22.)
3. All seats shall be forward-facing and shall be securely fastened to that part or parts of bus which support them. (See Item 2 under Aisle, page 22.)
4. No bus shall be equipped with jump seats or portable seats.
5. Forward-most pupil seat on right side of bus shall be located so as not to interfere with driver's vision, not farther forward than guard rail behind driver or rear of driver's seat when adjusted to its rear-most position.

6. Minimum center-to-center seat spacing shall be 26 inches. Distance between driver's seat when adjusted to its rear-most position and front face of seat-back of forward-most pupil seat on left side of bus shall not be less than 24 inches measured at cushion height.

7. Padding and covering on all seats shall be of such materials as will not flash or explode upon contact with spark or open flame.

8. Minimum distance between steering wheel and back rest of driver's seat shall be 12 inches. Driver's seat shall have fore-and-aft adjustment of not less than 3 inches and shall be strongly attached.

9. Minimum of 36-inch headroom for sitting position above top of undepressed cushion line of all seats shall be provided. Measurement shall be made vertically not more than 7 inches from side wall at cushion height and at fore-and-aft center of cushion.

10. Backs of all seats of similar size shall be of same width at top and of same height from floor and shall slant at same angle with floor.

11. Where grab handles on seats are used, they shall be enclosed.

Exception—small vehicles

→ Substitute following standards for those above:

1. All seats shall be securely fastened to body of vehicle.
2. Seats shall be covered with fire-resistant padding material and comfortably upholstered with adequate padding.
3. Jump seats or portable seats shall not be used.
4. Seat beside driver. if regular equipment or installed by vehicle manufacturer, may be used for pupil seating. It shall be securely fastened to body and shall be so constructed as not to interfere with pupils entering or leaving vehicle.
5. Allowable average rump width in determining seating capacity of bus shall be 13 inches.
6. All seats shall be at least 14 inches in over-all depth.
7. If forward-facing seats are used, they shall be so placed that distance from center to center measured at top center of backs shall be not less than 26 inches.
8. If longitudinal seats are used, only two shall be installed and distance between front edges of seat cushions shall be at least 20 inches.
9. Back rest for each longitudinal seat shall measure at least 8 inches vertically and shall be so mounted that its top edge is at least 12 inches above seat.

Stanchions and guard rails—

1. Vertical stanchion shall be installed at right rear corner of driver's seat in such position as neither to interfere with adjustment of driver's seat nor to obstruct 12-inch aisle. Guard rail, approximately 30 inches above floor and so placed as not to interfere with fore-
Tailpipe —
Tailpipe shall not extend beyond rear bumper. (See Item 2 under Exhaust system, page 15.)

Undercoating —
Entire underside of body, including floor members and side panels below floor level, shall be coated with fire-resistant, asphalt-base or rubber-base undercoating material, applied by spray method, at least \(\frac{1}{8} \)-inch thick, in order to seal, to deaden sound, to insulate, and to prevent oxidation.

Ventilation —
1. Body shall be equipped with suitable, controlled ventilating system of sufficient capacity to maintain proper quantity of air under operating conditions without opening of windows except in extremely warm weather.
2. If static-type exhaust roof ventilators are desired, they shall be installed in low-pressure area of roof panel.

Exception — small vehicles
Standard does not apply to small vehicles not manufactured specifically as school buses.

Wheel housings —
1. Wheel housings shall be of full open type.
2. Wheel housings shall be attached to floor sheets in such manner as to prevent any water or dust from entering body.
3. Inside height of wheel housings above floor line shall not exceed 10 inches.
4. Wheel housings shall provide clearance for dual wheels as established by National Association of Chain Manufacturers.\(^\text{27}\)

Exception — small vehicles
Standard does not apply to small vehicles not manufactured specifically as school buses.

Width — see Overall width on page 35.

Windshield and windows —
1. All glass in windshield, windows, and doors shall be of approved safety glass,\(^\text{28}\) so mounted that permanent mark is visible, and of sufficient quality to prevent distortion of view in any direction.
2. Windshield shall be large enough to permit driver to see roadway clearly, shall be slanted to reduce glare, and shall be installed between front corner posts that are so designed and placed as to afford minimum obstruction to driver’s view of roadway.

\(^{27}\) 111 West Washington Street, Chicago 2, Illinois.
3. Each full side window shall provide unobstructed emergency opening at least 9 inches high and 22 inches wide, obtained either by lowering of window or by use of knockout-type split-sash window.
4. All exposed edges of glass shall be banded.

Windshield washers —

Windshield washers shall be optional but, where required, they shall conform to body manufacturer's recommendations as to type and size for bus on which they are to be used.

Windshield wipers —

Bus shall be equipped with two positive-action windshield wipers of vacuum, air, or electric type.

Wiring —

1. All wiring shall conform to current standards of Society of Automotive Engineers.20
2. Circuits:
 a. Wiring shall be arranged in at least eight regular circuits, as follows:
 (1) head, tail, stop (brake), and instrument panel lamps
 (2) clearance lamps
 (3) dome and step-well lamps
 (4) starter motor
 (5) ignition and emergency door signal
 (6) turn-signal units
 (7) alternately flashing red signal lamps
 (8) horn.
 b. Any of above combination circuits may be subdivided into additional independent circuits.
 c. Wherever heaters and defrosters are used, at least one additional circuit shall be installed.
 d. Wherever possible, all other electrical functions (such as sanders and electric-type windshield wipers) shall be provided with independent and properly protected circuits.
3. A separate fuse or circuit breaker shall be provided for each circuit except starter motor and ignition circuits.
4. All wires within body shall be insulated and protected by covering of fibrous loom (or equivalent) which will protect them from external damage and minimize dangers from short circuits.
5. All light circuits shall be such as to provide, as nearly as possible, bulb design, voltage at light-bulb terminals.
6. Wires shall be fastened securely at intervals of not more than 24 inches. All joints shall be soldered or joined by equally effective connectors.

Exception—small vehicles

Wiring shall be manufacturer's standard.

20 485 Lexington Avenue, New York 17, New York.
APPENDIX

Development of National Standards for School Bus Construction

The National Conference on School Bus Standards, sponsored by the National Council of Chief State School Officers and held at Columbia University in 1939, pioneered in the development of nationally recommended standards for the construction of school buses.

1945 National Conference on School Transportation

In 1945, a National Conference on School Bus Standards, sponsored by the National Council of Chief State School Officers and administered by the NEA, National Commission on Safety Education, was held at Jackson's Mill, West Virginia, to revise certain existing standards and develop others which were felt to be essential. The general policies for this Conference were worked out with the Chief State School Officers under the direction of a planning committee. In addition to revising the standards developed earlier, the 1945 Conference set up standards for small vehicles to meet the needs of schools in sparsely settled areas.

1948 National Conference on School Transportation

The primary purpose of the 1948 Conference, also held at Jackson's Mill, West Virginia, was to develop standards for the selection and training of school bus drivers. On the advice of state transportation officials and school bus manufacturers, however, it was decided that one day of the Conference be devoted to revising certain sections of the 1945 revised edition of School Bus Standards. A significant step at the 1948 Conference was the adoption of flashing lights (now called school bus alternately flashing red signal lamps) in preference to the stop signal arm. A special committee of transportation officials worked jointly with the Society of Automotive Engineers on the specifications for the flashing lights. Several adjustments and revisions were made in other parts of the standards. The two publications resulting from the 1948 Conference were: Minimum Standards for School Buses (1948 revised edition) and Standards and Training Programs for School Bus Drivers.

1951 Interim National Conference on School Transportation

In 1950, at the request of the National Council of Chief State School Officers, an Interim National Conference on School Transportation, administered by the NEA, National Commission on Safety Education, was held in Washington, D.C. The recommendations of this Interim Conference were published as Tentative Minimum Standards for Transit and Metropolitan Types of School Buses.

1954 National Conference on School Transportation

At the request of the National Council of Chief State School Officers, the NEA National Commission on Safety Education administered the 1954 Conference which was held at Michigan State University in East Lansing. Among the purposes of the 1954 Conference were the following:

Revision of the 1948 Minimum Standards for School Buses: revision of the 1951 Tentative Minimum Standards for Transit and Metropolitan Types of School Buses: development of recommendations for extended educational uses of school buses: consideration of the so-called "school bus stop law" and other laws and regulations on which national uniformity is desirable; and development of recommendations to further the training of school bus drivers.
The published report of this Conference was titled Minimum Standards for School Buses, 1954 revised edition.

1959 National Conference on School Transportation

Following a request in 1957 of the Council of Chief State School Officers that another national conference on school transportation be held as soon as practicable, the NEA National Commission on Safety Education held four regional conferences during 1958 to identify problems in need of national conference consideration. Representatives of 39 state education departments, together with staff of the U. S. Office of Education and of the Commission, attended these regional meetings.

After a meeting of the Conference steering committee early in 1959, six study committees were appointed and brought together in Washington, D. C., during June to consider problems resulting from the regional meetings of the previous year and to develop proposals for consideration at the national level. These study committees were ably assisted in their work by technical consultants from the School Bus Body Manufacturers' Association (An Industry Division of Truck and Body Equipment Association, Inc.): Automobile Manufacturers Association; Society of Automotive Engineers; Underwriters' Laboratories, Inc.; Tire and Rim Association; American Association of Motor Vehicle Administrators; National Committee on Uniform Traffic Laws and Ordinances; and National Bureau of Standards of the U. S. Department of Commerce.

Technical consultants from the same groups and representatives of many other national organizations participated in the National Conference on School Transportation held in October 1959 at the University of Kansas in Lawrence. For the first time at any such national conference an exhibit of school bus components and related equipment was held in which nearly 20 companies took part.

The 1959 National Conference developed and adopted recommendations for this 1959 revised edition of Minimum Standards for School Buses; revised the 1949 Conference publication on school bus drivers and gave it a new title—Selection, Instruction, and Supervision of School Bus Drivers: Recommended Policies and Practices—and recommended changes in and additions to the Uniform Vehicle Code which have been submitted for consideration to the National Committee on Uniform Traffic Laws and Ordinances.

National School Bus Chrome

The color known as National School Bus Chrome was designated as such by the 1939 National Conference on School Bus Standards. The National Bureau of Standards of the U. S. Department of Commerce assisted in developing this color and its colorimetric specification.

At the time of the 1954 National Conference on School Transportation, the color chips for National School Bus Chrome provided by the National Bureau of Standards were designated as follows: TT-C-595. #1305. Starting March 1, 1956, chips of the color that pass the same specifications for chromaticity and daylight reflectance as required for National School Bus Chrome were designated thus: Federal Standard No. 595, #13432. Color chips of the color now identified as #13432 are available at 5 cents each from General Services Administration, Business Service Center, Region 3, Seventh and D Streets, S. W., Washington 25, D. C.

* Copies are available from the National Education Association, 1201 Sixteenth Street, N.W., Washington 6, D. C. Price, 50 cents.
All vehicles hereafter purchased or placed in use for the transportation of pupils, whether owned or hired by the school district, shall conform to standards prescribed by the State Council of Education. Such standards, when promulgated by the State Council of Education, may be revised not oftener than once each year, and whenever new requirements are made, they shall be published at least six months before they shall become effective, and shall apply only to vehicles thereafter purchased or put in use. (School Laws of Pennsylvania, Article XIV, Section 1406.)

4. State departments of education, in those states which have not already placed upon some state department the responsibility of setting up state rules and regulations for school buses, should use the first opportunity to request their legislatures to place this responsibility upon the state department of education.

Uniform Vehicle and Traffic Regulations

The need for uniform state legislation on a nationwide basis concerning vehicles and traffic was formally recognized in 1924 when the Secretary of Commerce called the first National Conference on Street and Highway Safety. During the following two years a committee appointed by that Conference drafted the Uniform Vehicle Code. This Code represented a compromise reached after a study of all state statutes on vehicles and traffic and became a distillation of the best thought and practice in the field. Judges, prosecutors, lawyers, police, motor vehicle administrators, educators, traffic engineers, safety specialists, business people, and others have participated in developing successive revisions of the Uniform Vehicle Code.

Numerous professional and other groups, both official and non-official, recommend adoption of the Uniform Vehicle Code by all states. Although much progress has been made, a great deal more is needed to assure reasonable uniformity of the vehicle and traffic laws among all the states.

For a number of years the National Committee on Uniform Traffic Laws and Ordinances has carried forward the work of revising the Code to keep it up to date. As a result it meets changing conditions, improved techniques, and advances in the design of highways and vehicles.

The 1945 National Conference on School Transportation recommended uniform traffic regulations regarding school transportation and proposed a change in the Uniform Vehicle Code regarding overtaking and passing school buses. The National Committee on Uniform Traffic Laws and Ordinances reviewed the proposed change and suggested a further revision of the pertinent section of the Code. After studying the suggested revision, the 1948 National Conference on School Transportation approved it and, in addition, recommended that flashing lights be used on school buses. The Code was subsequently revised to include provisions both on overtaking and passing school buses and on special lighting equipment on school buses. Thus, efforts of the National Committee on Uniform Traffic Laws and Ordinances and the National Conference on School Transportation were combined in support of agreed-upon objectives.

Although the 1954 Conference discussed many problems which uniform state laws could help solve, it took no official action regarding recommendations for changes in the Uniform Vehicle Code. However, the Conference authorized the appointment of a committee to work on the matter of uniform traffic regulations affecting school transportation.

The combined efforts of state education departments and the National Committee on Uniform Traffic Laws and Ordinances on school transportation matters
can bring about more uniform state laws that will greatly enhance the safety of
the millions of pupils who ride daily to and from school in buses.

The *Uniform Vehicle Code*, as revised in 1956, defines a school bus and
includes provisions relating to the minimum age of school bus drivers, overtaking
and passing school buses, special lighting equipment on school buses, identification
of school buses, and the authority of state boards of education to regulate the
design and operation of school buses.

The 1959 National Conference on School Transportation recommended several
changes in and additions to the *Uniform Vehicle Code* which were forwarded to
the National Committee on Uniform Traffic Laws and Ordinances for considera-
tion in connection with revision of the *Code*.

Suggested Method for Estimating Generator Capacity

<table>
<thead>
<tr>
<th>Constant Load</th>
<th>Intermittent Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>Approximate average current draw (amperes)</td>
</tr>
<tr>
<td>Ignition</td>
<td>2.50</td>
</tr>
<tr>
<td>Head lamps (dual low beam)</td>
<td>6.85</td>
</tr>
<tr>
<td>Tail lamps</td>
<td>0.82</td>
</tr>
<tr>
<td>Clearance lamps</td>
<td>2.52</td>
</tr>
<tr>
<td>Flasher motor</td>
<td>3.00</td>
</tr>
<tr>
<td>Instrument panel</td>
<td>0.80</td>
</tr>
<tr>
<td>Left-hand driver’s heater (two motors)</td>
<td>18.00</td>
</tr>
<tr>
<td>Left-hand driver’s heater (one motor)</td>
<td>9.00</td>
</tr>
<tr>
<td>Right-hand driver’s heater (one motor)</td>
<td>9.00</td>
</tr>
<tr>
<td>Defroster fan</td>
<td>3.00</td>
</tr>
<tr>
<td>Left-hand defroster</td>
<td>8.00</td>
</tr>
<tr>
<td>Right-hand defroster</td>
<td>8.00</td>
</tr>
</tbody>
</table>

(Note: Horn is not included because of its limited use.)

The above values show (in amperes) the approximate average draw of current
for typical constant-load and intermittent-load equipment items. The draw for
any specific item will vary depending on make and model of the equipment. For
more accurate values, the manufacturer’s specifications should be consulted.

To determine the electrical load (in amperes) for a typical school bus, the
following formula is recommended:

Constant load – 35% of intermittent load = total load.
TITLES AND ADDRESSES OF PRINCIPAL STATE SCHOOL OFFICERS

(for use by manufacturers in furnishing information to state departments of education)

Superintendent of Education
State Department of Education
Montgomery 4, ALABAMA
Commissioner of Education
State Department of Education
Juneau, ALASKA

Superintendent of Public Instruction
State Department of Public Instruction
Phoenix, ARIZONA
Commissioner of Education
State Department of Education
Little Rock, ARKANSAS

Superintendent of Public Instruction
State Department of Education
Sacramento 14, CALIFORNIA
Commissioner of Education
State Department of Education
Denver, COLORADO

Commissioner of Education
State Department of Education
Hartford 15, CONNECTICUT
Superintendent of Public Instruction
State Department of Public Instruction
Dover, DELAWARE

Superintendent of Public Instruction
State Department of Education
Tallahassee, FLORIDA
Superintendent of Schools
State Department of Education
Atlanta, GEORGIA

Superintendent of Public Instruction
Department of Public Instruction
Honolulu, HAWAII
Superintendent of Public Instruction
State Department of Education
Boise, IDAHO

Superintendent of Public Instruction
Office of the Superintendent of Public Instruction
Springfield, ILLINOIS
Superintendent of Public Instruction
State Department of Public Instruction
Indianapolis 4, INDIANA

Superintendent of Public Instruction
State Department of Public Instruction
Des Moines 19, IOWA
Superintendent of Public Instruction
State Department of Public Instruction
Topeka, KANSAS

Superintendent of Public Instruction
State Department of Education
Frankfort, KENTUCKY

Superintendent of Public Education
State Department of Education
Baton Rouge 4, LOUISIANA
Commissioner of Education
State Department of Education
Augusta, MAINE

Superintendent of Schools
State Department of Education
Baltimore 1, MARYLAND
Commissioner of Education
State Department of Education
Boston 18, MASSACHUSETTS
Superintendent of Public Instruction
State Department of Public Instruction
Lansing 2, MICHIGAN
Commissioner of Education
State Department of Education
St. Paul 1, MINNESOTA
Superintendent of Public Education
State Department of Education
Jackson, MISSISSIPPI
Commissioner of Education
State Department of Education
Jefferson City, MISSOURI
Superintendent of Public Instruction
State Department of Public Instruction
Helena, MONTANA
Commissioner of Education
State Department of Education
Lincoln 9, NEBRASKA
Superintendent of Public Instruction
State Department of Education
Curson City, NEVADA
Commissioner of Education
State Department of Education
Concord, NEW HAMPSHIRE
Commissioner of Education
State Department of Education
Trenton 25, NEW JERSEY
Superintendent of Public Instruction
State Department of Education
Santa Fe, NEW MEXICO
Commissioner of Education
State Education Department
Albany 1, NEW YORK
Superintendent of Public Instruction
State Department of Public Instruction
Raleigh, NORTH CAROLINA
Superintendent of Public Instruction
State Department of Public Instruction
Bismarck, NORTH DAKOTA
Superintendent of Public Instruction
State Department of Education
Columbus 15, OHIO

46

020819
SPONSORING GROUPS AND STEERING COMMITTEE

American Association of School Administrators, NEA

Council of Chief State School Officers
CLAUSE L. PURCELL, general chairman: superintendent of schools. State Department of Education. Atlanta, Georgia.

Representatives of State Education Agencies
RONALD W. COX, assistant chief. Division of School Administration. State Department of Education. Sacramento 14, California.

J. T. REECE, director. Division of Transportation. State Department of Education. Santa Fe, New Mexico.

JOHN L. VICKERS, director. Division of Pupil Transportation. State Department of Education. Frankfort, Kentucky.

Department of Rural Education, NEA
WALTER M. GORDON, supervisor of transportation. Baltimore County Schools. Towson, Maryland.

LOUIS A. YANDELL, supervisor of pupil transportation. Fayette County Schools. Lexington, Kentucky.

National Commission on Safety Education, NEA

GERALD R. WALLACE, superintendent of schools. Corvallis, Oregon.
U.S. Office of Education

Staff
NORMAN KEY, executive secretary, National Commission on Safety Education. National Education Association, Washington 6, D. C.
S. A. ABERCROMBIE, assistant secretary, National Commission on Safety Education, National Education Association, Washington 6, D. C.
ROBERT M. ISENBERG, assistant director, Division of Rural Service, National Education Association, Washington 6, D. C.
JEAN L. PROETSCH, professional assistant, National Commission on Safety Education, National Education Association, Washington 6, D. C.

ROSTER OF CONFERENCE PARTICIPANTS

(Names of official state representatives are indicated by asterisks)

S. A. ABERCROMBIE, assistant secretary, National Commission on Safety Education, National Education Association, Washington 6, D. C.
J. U. ADAMS, assistant manager, University Extension, University of Kansas, Lawrence
WILLIAM BACHOFNER, lieutenant, Washington State Patrol, Olympia, Washington
*J. POPE BAIRD, specialist in transportation, State Department of Education, Tallahassee, Florida
E. E. BAKER, director, Attendance and Transportation, Fulton County Board of Education, Atlanta, Georgia
H. H. BARRINEAU, Sr., supervisor of transportation, Escambia County Board of Public Instruction, 215 West Garden Street, Pensacola, Florida
JAMES BASHAM, regional representative, National Highway Users Conference, Inc., Kansas City, Kansas
PAUL BASS, sales manager, Carpenter Body Works, Michell, Indiana
DAVE BAXTER, assistant superintendent of business, Delta County Joint School District No. 50, Route 1, Box 66, Delta, Colorado
A. G. BERGSTROM, president, Bergstrom Manufacturing Company, Rockford, Illinois
*S. G. BIARKEN, safety inspector, Traffic Division, Arizona Highway Department, Phoenix, Arizona (representing Arizona State Department of Public Instruction)
*C. E. BOYD, chief consultant, Transportation, Texas Education Agency, Austin 11, Texas
L. H. BOYD, supervisor, Product Market Research, GMC Truck & Coach Division, General Motors Corporation, Pontiac 11, Michigan
H. B. BOYER, assistant chassis engineer, GMC Truck & Coach Division, General Motors Corporation, Pontiac 11, Michigan
M. M. BROCKWAY, president, Crown Coach Corporation, 2500 E. 12th Street, Los Angeles 21, California
MARK BROOKS, assistant superintendent in charge of transportation, Lincoln County School District, Newport, Oregon
M. RUTH BROOM, convention editor, Press and Radio Relations Division, National Education Association, Washington 6, D. C.
*C. C. BROWN, director, Division of Transportation, State Department of Public Instruction, Raleigh, North Carolina
KENNETH BUGBEE, chief mechanic, Polk County Board of Public Instruction, Bartow, Florida
PERCY L. CAHILL, assistant superintendent, York County Public Schools, York, Pennsylvania
FRED A. CAIN, 239 Prospect, Jacksonville, Illinois
*WESLEY L. CAMP, director, Division of Transportation, State Department of Education, Oklahoma City, Oklahoma
NORMAN CARLSON, engineer, Carpenter Body Works, Mitchell, Indiana
HAROLD O. CARLTON, educational consultant, American Automobile Association, 1712 G Street, N.W., Washington 6, D.C.
*JOSEPH CASUSO, assistant, Division of School Business Management, State Education Department, Albany 1, New York
*RICHARD W. CASWELL, 48 Kingstown Road, Narragansett, Rhode Island (representing Governor Del Sesto)
W. BARNIE CATON, superintendent, Gallup-McKinley County Schools, Gallup, New Mexico
*HERBERT CHIARA, transportation consultant, State Department of Education, Carson City, Nevada
PRICE E. CLARK, traffic consultant, Insurance Institute for Highway Safety, 1710 H Street, N.W., Washington 6, D.C.
*FRANK D. COCHRAN, formerly supervisor of transportation, State Department of Education, Columbus 15, Ohio
*ROBERT M. COCHRANE, director of school plant and transportation services, State Department of Education, Denver 2, Colorado
RENE COULMAN, supervisor of pupil transportation, Arlington County Schools, 4315 - 29th Street South, Arlington, Virginia
MALCOLM Cox, Gallup-McKinley County Schools, Gallup, New Mexico
*RONALD W. COX, assistant division chief, School Administration, State Department of Education, 721 Capitol Avenue, Sacramento 14, California
ROBERT G. CROMERY, captain, inspection service supervisor, Motor Vehicle Department, Madison 2, Wisconsin
E. R. CROW, director, State Educational Finance Commission, Columbia 10, South Carolina
WILLIAM DAHLHEIMER, supervisor of transportation, Edmonds School District No. 15, Edmonds, Washington
H. WARNER DAILEY, formerly secretary, School Bus Body Manufacturers' Association, New York, New York
EARL DARNELL, supervisor of school transportation, Greenbrier County, Lewisburg, West Virginia
NORMAN H. DAVIS, Jr., executive engineer, Underwriters' Laboratories, Inc., 207 E. Ohio Street, Chicago 11, Illinois
RANDALL DAVIS, director of operations, City School Bus System, 2251 East 97th Street, Los Angeles 2, California
*JOE T. DEFoor, assistant director in charge of pupil transportation, State Department of Education, Atlanta 3, Georgia
LEWIS J. DEVUONO, Heavy Truck Sales Department, Ford Motor Company, Round Drive at Southfield Road, Dearborn, Michigan
ROBERT E. DIX, experimental engineer, Automotive Brakes, Bendix Products Division, South Bend 20, Indiana
ROBERT L. DONIGAN, general counsel (formerly acting director), The Traffic Institute, Northwestern University, Evanston, Illinois
L. P. DUEWALD, superintendent, Wakonda Public School, Wakonda, Clay County, South Dakota
CLARE EBERSOLE, educational consultant, Wayne County Board of Education, 400 Woodward Avenue, Detroit 26, Michigan
*WALTER T. EDGREN, director, Administration and Finance, State Department of Public Instruction, Des Moines 19, Iowa
*J. L. EIDSON, supervisor of school transportation, State Department of Education, Little Rock, Arkansas

49
020822
CLAUDE M. ELMORE, assistant superintendent, County School District of Oakland County, 1025 N. Telegraph Road, Pontiac, Michigan

D. P. FISHER, Chevrolet Engineering Department, Chevrolet Central Office, General Motors Building, Detroit 2, Michigan

HARRY A. FRUTS, secretary-treasurer, Indiana School Bus Drivers Association, Crawfordsville, Indiana

HARRY W. GAUSE, superintendent of transportation and supplies, Pinellas County Board of Public Instruction, 1960 East Druid Road, Clearwater, Florida

JACK GILSON, Ford Truck Design and Package, Engineering Building = 5, Ford Motor Company, 20,000 Rotunda Drive, Dearborn, Michigan

*WALTER M. GORDON, supervisor of transportation, Baltimore County Schools, Towson, Maryland

JAMES D. GRIFFING, project engineer, Henney Motor Company, Division of Eureka Williams Corporation, Canastota, New York

NEAL A. GRUBB, superintendent of schools, Minden, Nebraska

-MAURICE J. HAGERTY, director of school transportation, State Department of Education, St. Paul 1, Minnesota

C. ARTHUR HANSEN, superintendent, Mount Ayr Community Schools, Mount Ayr, Iowa

CHARLES HARBISON, lieutenant, director of safety education, Indiana State Police, Stout Field, Indianapolis, Indiana

J. A. HARRIS, superintendent of schools, Chester, South Dakota

HERMAN F. HARRISON, superintendent, Labette County Community High School, Altamont, Kansas

*LEON HART, assistant supervisor of transportation, State Department of Public Instruction, Dover, Delaware

G. L. HARTMAN, chief product engineer, School Coach Division, Superior Coach Corporation, Lima, Ohio

JOHN W. HEIM, supervisor of transportation, Board of Education, Prince Georges County, Upper Marlboro, Maryland

*RALPH M. HENDRICK, supervisor of transportation, State Educational Finance Commission, Columbia 10, South Carolina

EDWIN B. HEWITT, president, Indiana School Bus Drivers Association, West Terre Haute, Indiana

PAUL E. HITCH, Truck Chassis Division, Chevrolet Engineering Center, Box 246, North End Station, Detroit 2, Michigan

V. C. HOGREN, executive vice president, Hitchcock Publishing Company, Wheaton, Illinois

W. H. HOLDER, director, School Transportation, Hamilton County Department of Education, Chattanooga 2, Tennessee

*A. E. HOUK, state instructor, Motor Transport Training, 909 Valley Road, Birmingham 8, Alabama

Otis HOUGHTON, assistant superintendent, Tucumcari Public Schools, Tucumcari, New Mexico

I. B. HUDSON, superintendent, Onslow County Schools, Jacksonville, North Carolina

E. D. HUMANN, superintendent, School District 4R, Aurora, Nebraska

WALLACE N. HYDE, formerly director, Driver Education and Accident Records Division, Department of Motor Vehicles, Raleigh, North Carolina

ROBERT M. ISENBERG, assistant director, Division of Rural Service, National Education Association, Washington 6, D. C.

WILLIAM E. JARAD, assistant professor, Driver Education and Safety, Division of Field Services, Central Michigan University, Mount Pleasant

Kermit A. JOHNSON, assistant superintendent, Jefferson County Schools, 408 Courthouse, Birmingham 3, Alabama
W. C. Kampschroeder, assistant superintendent, State Department of Public Instruction, State House, Topeka, Kansas

John E. Kennahan, legislative research counsel, National Committee on Uniform Traffic Laws and Ordinances, 711 Fourteenth Street, N. W., Washington 5, D. C. Norman Key, secretary, National Commission on Safety Education, National Education Association, Washington 6, D. C.

John H. King, manager, Motor Truck Division, Automobile Manufacturers Association, 320 New Center Building, Detroit 2, Michigan

E. E. Kirkpatrick, supervisor, School Finance and Pupil Transportation, State Department of Public Instruction, Olympia, Washington

Hubert Knight, chief of specifications, State Board of Control, Austin, Texas

James F. Knowles, engineer, Hackney Brothers Body Company, Wilson, North Carolina

Elmer Koivisto, business manager, St. Louis County Board of Education, Duluth 2, Minnesota

Earl Kornegay, 101 Eagle Drive, Hobbs, New Mexico

Robert B. Kurre, director of engineering, Wayne Works Division, Divco-Wayne Corporation, Richmond, Indiana

Melvin C. Lafferty, 334 West Chestnut, Freeport, Illinois

James N. Langer, transportation and attendance supervisor, Dane County Schools, Mount Horeb, Wisconsin

Bill Lemon, director, School Bus Safety, New Mexico Western College, Silver City, New Mexico

S. A. Lindahl, superintendent, Dickinson County Community High School, Chapman, Kansas

Avery J. Link, director, School Bus Transportation, State Department of Education, Lincoln 9, Nebraska

J. D. Littrell, Dallas County Schools, 300 Records Building, Dallas 2, Texas

Otto C. Lucy, representative, Bendix-Westinghouse Automotive Air Brake Company, 2809 Guilford Lane, Oklahoma City 20, Oklahoma

E. A. MacFarland, director, University Extension, University of Kansas, Lawrence

L. G. McGee, transportation supervisor, County Board of Education, Greene County, Eutaw, Alabama

O. H. McKnelly, supervisor of transportation, State Department of Public Instruction, 302 State Office Building, Springfield, Illinois

L. J. McWilliams, assistant director of transportation, Fulton County Board of Education, Atlanta, Georgia

D. L. Manning, engineer, Mack Trucks, Inc., 601 South Tenth Street, Allentown, Pennsylvania

Buford Mannix, Carpenter Body Works, Inc., 5145 Postlewaite Road, Worthington, Ohio

Robert L. Marshall, supervisor of safety education, Kansas City Public Schools, Library Building, 9th and Locust Streets, Kansas City, Missouri; and member, National Commission on Safety Education, NEA

Ralph L. Martin, assistant superintendent, Consolidated School District No. 2, Raytown, Missouri

Seth K. Martin, lieutenant, Special Services Station, Technical Services Division, Department of California Highway Patrol, 2490 First Avenue, Sacramento 4, California

Stanley J. Marx, president, Gillig Brothers, P. O. Box 330, Hayward, California

George E. Meese, Miniature Lamp Department, General Electric Company, Nela Park, Cleveland 12, Ohio

George R. Miller, Jr., superintendent of public instruction, State Department of Public Instruction, Dover, Delaware

Leland D. Miller, director of non-instructional services, Saydel Community School District, Des Moines 13, Iowa
PAUL B. MOORE, school bus contractor. Box 893, Lovington, New Mexico
J. B. MURPHY, sales representative. K-D Lamp Company, 1910 Elm Street, Cincinnati 10, Ohio
ROBERT NELSON, university extension, University of Kansas, Lawrence
* A. R. NESS, deputy superintendent. State Department of Public Instruction. Bismarck, North Dakota
F. R. NOFFSINGER, Training Division. The Traffic Institute, Northwestern University, 1804 Hinman Avenue, Evanston, Illinois
W. D. NORMAN, engineering and sales. Ward Body Works, Conway, Arkansas
MAX OLDFIELD, State Highway Department, Olympia, Washington
G. W. ONKSEN, reliability engineer. Guide Lamp Division, General Motors Corporation, P. O. Box 1090, Anderson, Indiana
ROBERT H. PARADISE, president. Schoolway Transportation Company, Inc., P. O. Box 127, Hales Corners, Wisconsin
*ORVILLE G. PARRISH, state coordinator of pupil transportation. State Department of Education, Trenton 25, New Jersey
RUSSELL M. PARRIS, Field Services Department, Automobile Manufacturers Association, 320 New Center Building, Detroit 2, Michigan
GEORGE W. PATRICK, Jr., assistant superintendent. Griffin-Spalding County School System, Griffin, Georgia
O. B. PATTERSON, lieutenant, coordinator. Traffic Safety Education, Oklahoma Highway Patrol, Department of Public Safety, Oklahoma City, Oklahoma
B. J. PAVLOVICH, field representative. Douglas Fir Plywood Association, 6014 North Woodland, Kansas City, Missouri
HAROLD PELLERINO, safety engineer. Division of Traffic and Safety, State Highway Commission, State Office Building, Topeka, Kansas
LEWIS L. PICKETT, superintendent of schools. Scott County, Davenport, Iowa
RICHARD PREMO, engineer. Superior Coach Corporation, Lima, Ohio
D. V. PRICE, supervisory of school bus safety. State Department of Motor Vehicles, 426 Winter Street, N. E., Salem, Oregon
KENNETH J. PRICE, sales engineer. Dodge Truck Division, Chrysler Corporation, P. O. Box 2088, Detroit 31, Michigan
RAY PRINCE, National Safety Council, 425 North Michigan Avenue, Chicago 11, Illinois
JEAN L. PROETSCH, professional assistant. National Commission on Safety Education, National Education Association, Washington 6, D. C.
G. T. PROFFIT, superintendent. Harnett County Schools, Lillington, North Carolina
DON PRYOR, director of business affairs. Edina-Morningside Public Schools, Edina 24, Minnesota
CLAUSE L. PURCELL, general chairman, superintendent of schools. State Department of Education, Atlanta 1, Georgia
* J. T. REECE, director. School Transportation. State Department of Education, P. O. Box 999, Santa Fe, New Mexico
ARTHUR ROBERTS, director. Division of Transportation. State Department of Public Instruction, Des Moines 19, Iowa
IRA B. ROGERS, Jr., director. Education and Rural Division. Automotive Safety Foundation, 200 Ring Building, Washington 6, D. C.
O. I. RUGG, Glass Division, Ford Motor Company, The American Road, Dearborn, Michigan
WILBUR RUMPH, Blue Bird Body Company, Fort Valley, Georgia
ALLEN RUSH, captain. Safety Training. Kansas Highway Patrol, Topeka, Kansas
LEWIS R. SCHETTAN, superintendent. Brandon Independent School District = 145, Brandon, South Dakota
YALE R. SCHVELY, vice president, Superior Coach Corporation, Lima, Ohio
*JAMES C. SCHOLLER, consultant, School Transportation, State Department of Public Instruction, Pierre, South Dakota
J. J. SCHULTZ, Dodge Truck Division, Chrysler Corporation, Detroit 31, Michigan
*E. GEORGE SCHUTT, consultant, School Organization and Transportation, State Department of Public Instruction, Lansing 2, Michigan
*MERRILL W. SCOTT, director, Division of School Traffic Safety Education, State Department of Public Instruction, 227 State House, Indianapolis 4, Indiana
MARION B. SLOSS, chief, Bureau of Administrative Services, State Department of Education, Sacramento 14, California
GEORGE B. SMITH, dean, University of Kansas, Lawrence
*THOR SORENSEN, director, Pupil Transportation, State Department of Public Instruction, Madison 2, Wisconsin
DAVID H. SOULE, coordinator, Michigan School Bus Driver Education Program, Division of Field Services, Western Michigan University, Kalamazoo, Michigan
HAROLD STARN, director of transportation, Bedford School, Temperance, Michigan
PAUL STONE, member, State Board of Education, Waynesboro, Georgia
CHARLES STOUT, supervisor of pupil transportation, Jefferson County Board of Education, Louisville, Kentucky
*ARTHUR L. SUMMERS, director, District Reorganization and Transportation, State Department of Education, Jefferson City, Missouri
LONNIE E. SWEAT, member, State Board of Education, Blackshear, Georgia
LOUIS TAUB, Specialized Vehicle Engineering Center, Chevrolet Engineering Center, Box 246, North End Station, Detroit 2, Michigan
*J. M. THATCH, assistant director, School Building and Transportation, State Department of Education, Jackson, Mississippi
J. W. THOMAS, JR., sales manager, Perley A. Thomas Car Works, Inc., High Point, North Carolina
R. O. THOMAS, formerly vice president—sales, Wayne Works Division, Divco-Wayne Corporation, Richmond, Indiana
ALLEN T. THORNE, district vice president, Indiana School Bus Drivers Association, Vincennes, Indiana
ADEL F. THROCKMORTON, superintendent of public instruction, State Department of Public Instruction, Topeka, Kansas
*MRS. GEORGE B. TONKIN, vice president, Region VII, National Congress of Parents and Teachers, 3223 Mountain View Drive, Boise, Idaho
MERTON TURCK, consultant, School Transportation, Department of Administrative and Educational Services, College of Education, Michigan State University, East Lansing
W. P. TURNER, specifications engineer, Chevrolet Central Office, General Motors Building, Detroit 2, Michigan
O. J. VANCE, chief chassis engineer, Product Group, Fort Wayne Engineering, International Harvester Company, Fort Wayne, Indiana
*JOHN L. VICKERS, director, Division of Pupil Transportation, State Department of Education, Frankfort, Kentucky
GERALD R. WALLACE, superintendent of schools, Corvallis, Oregon; and chairman, National Commission on Safety Education, NEA
HANS WALLIN, assistant business manager, St. Louis County Board of Education, Duluth 2, Minnesota
*ROY W. WALTER, director, Transportation and Driver Education, State Department of Education, Charleston 5, West Virginia
RONALD M. WARD, Compton Union High School District, 417 West Olive Street, Compton, California
RICHARD WATTS, supervisor of operations, Santa Monica Unified School District, 1723 Fourth Street, Santa Monica, California
EARNEL WELSHIMER, director of research. Carpenter Body Works, Mitchell, Indiana
*SIDNEY C. WERNER, fiscal agent. State Department of Education. Capitol Building, Cheyenne, Wyoming
C. E. WHITE, superintendent of schools. Canton, South Dakota
JOHN WRIGHT, county superintendent of education. Attalla County, Kosciusko, Mississippi
ROY B. WILLIAMS, equipment superintendent. Division of Transportation. State Board of Education. Raleigh, North Carolina
RAYMOND L. WIMBUSH, supervisor of pupil transportation. State Board of Education. Richmond 16, Virginia
LESTER WINDER, supervisor of transportation. Normandy School District, 7837 Natural Bridge Road, St. Louis 21, Missouri
LESTER WITT, supervisor of transportation. Jefferson County Public Schools, Administration Building, 1580 Yarrow Street, Lakewood, Colorado
TATE WOODRUFF, superintendent of transportation. Forrest City Public Schools, Forrest City, Arkansas
*A. HARVEY WRIGHT, director of transportation. State Department of Education. Salem, Oregon
EARL H. WRIGHT, state instructor. Motor Transport Training, P. O. Box 2847, University, Alabama
LOUIS A. YANDELL, supervisor of pupil transportation. Fayette County Schools, 400 Lafayette Drive, Lexington, Kentucky
A. H. ZEIDLER, purchaser. State Board of Control. Austin, Texas

EXHIBITORS

THE ACME SPECIALTY MANUFACTURING COMPANY, 2298 Smead Avenue, Toledo 6, Ohio
Robert T. Skilliter, president
THE ANDERSON COMPANY, 1075 Grant Street, Gary 40, Indiana
George L. Teets, fleet safety consultant
ARROW SAFETY DEVICE COMPANY, Holmen Street, Mt. Holly, New Jersey
D. W. Ogilvie, sales manager
BOSTROM CORPORATION, 133 West Oregon Street, Milwaukee 4, Wisconsin
Harold G. Kilb, advertising and sales promotion
CAROLINA METAL PRODUCTS CORPORATION, Raleigh, North Carolina
John H. Hutchinson, sales manager
COACH AND EQUIPMENT SALES CORPORATION, 2 Main Street, Penn Yan, New York
A. C. Kreutziger, president
COLUMBUS METAL PRODUCTS, INC., R. P. Box 567, Columbus 16, Ohio
R. P. Donley, vice president and chief engineer
GMC TRUCK & COACH DIVISION, GENERAL MOTORS CORPORATION, 660 South Boulevard East, Pontiac 11, Michigan
A. L. Wallace, manager, State Government Sales
HEYWOOD-WAKEFIELD COMPANY, 206 Central Street, Gardner, Massachusetts
Kenneth J. Conway, sales representative; H. B. Gengenbach; A. B. Stavely
INTERNATIONAL HARVESTER COMPANY, 180 North Michigan Avenue, Chicago 1, Illinois
Milton R. Liechty, sales engineer; C. H. Christie, manager, Motor Truck Fleet Sales
KELSEY-HAYES COMPANY, 3600 Military Avenue, Detroit 32, Michigan
D. L. Barber, sales representative; E. G. Hill, sales representative; Robert L. Laurence, field service engineer; J. L. Schafer, west coast division manager
MINNESOTA MINING AND MANUFACTURING COMPANY, 900 Bush Avenue, St. Paul 6, Minnesota
Larry L. Curran, Robert G. Katcher, David H. Smith, Joseph Stephenson, and Norman V. Swenson, sales representatives
SAMUEL MOORE & COMPANY, Transportation Products Division, Mantua, Ohio
Jay Moore, assistant to the president; Jack Radabaugh, assistant sales manager
OILDEX CORPORATION, 418 East 2nd Street, Tulsa, Oklahoma
O. Jones, vice president; Marvin L. Wright, representative
THE R.C.A. RUBBER COMPANY, 1833 East Market Street, Akron 5, Ohio
Robert Field, sales representative; Dan E. Reiss, vice-president, sales
RING-WALD PRODUCTS, INC., 123 North Lowry Avenue, Springfield, Ohio
Robert E. Smith, sales manager; Edwin P. Watkins, sales representative
ROYERSFORD SPRING COMPANY, 1st Avenue and Main Street, Royersford, Pennsylvania
Carl H. Heldenbrand, general manager
SAFETY CROSS MIRROR COMPANY, 3415 Butternut Street, Lambertville, Michigan
Reid R. Stout, president
National Commission on Safety Education
National Education Association
1201 16th Street, N.W.
Washington 6, D. C.